心理

当前位置 /首页/完美生活/心理/列表

两个正态分布的乘积的期望

两个正态分布的乘积的期望

由于X与e独立,所以E(X|Y)=E(X|X+e)=E(X|X)=X

Var(X|Y)=Var(X|X+e)=Var(X|X)=E(X^2|X)-(E(X|X))^2=(X^2)-X^2=0

如果只知道Z=X+Y的分布,而没有其他任何关于X和Y的先验信息,是无法确定X和Y的分布的,例如:若Z~N(0,d^2),X和Y都是有无穷多可能的。

设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]

∫e^[-(x-u)^2/2(t^2)]dx=(√2π)t.(*)

求均值

对(*)式两边对u求导:

∫{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0

约去常数,再两边同乘以1/(√2π)t得:

∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0

把(u-x)拆开,再移项:

∫x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx

也就是

∫x*f(x)dx=u*1=u

这样就正好凑出了均值的定义式,证明了均值就是u。

(2)方差

过程和求均值是差不多的,我就稍微略写一点。

对(*)式两边对t求导:

∫[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π

移项:

∫[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2

也就是

∫(x-u)^2*f(x)dx=t^2

正好凑出了方差的定义式,从而结论得证。

扩展资料:

集中性:正态曲线的高峰位于正中央,即均数所在的位置。

对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。

TAG标签:期望 正态分布 乘积 #